388 research outputs found

    Modeling the coma of 2060 Chiron

    Get PDF
    Observations of comet-like activity and a resolved coma have established that 2060 Chiron is a comet. Determinations of its radius range from 65 to 200 km. This unusually large size for a comet suggests that the atmosphere of Chiron is intermediate to the tightly bound, thin atmospheres typical of planets and satellite and the greatly extended atmospheres in free expansion typical of cometary comae. Under certain conditions it may gravitationally bind an atmosphere that is thick compared to its size, while a significant amount of gas escapes to an extensive exosphere. These attributes coupled with reports of sporadic outbursts at large heliocentric distances and the identification of CN in the coma make Chiron a challenging object to model. Simple models of gas production and the dusty coma were recently presented but a general concensus on many basic features has not emerged. Development was begun on a more complete coma model of Chiron. The objectives are to report progress on this model and give the preliminary results for understanding Chiron

    An S2 Fluorescence Model for Interpreting High-Resolution Cometary Spectra. I. Model Description and Initial Results

    Full text link
    A new versatile model providing S2 fluorescence spectrum as a function of time is developed with the aim of interpreting high resolution cometary spectra. For the S2 molecule, it is important to take into account both chemical and dynamic processes because S2 has a short lifetime and is confined in the inner coma where these processes are most important. The combination of the fluorescence model with a global coma model allows for the comparison with observations of column densities taken through an aperture and for the analysis of S2 fluorescence in different parts of the coma. Moreover, the model includes the rotational structure of the molecule. Such a model is needed for interpreting recent high spectral resolution observations of cometary S2. A systematic study of the vibrational-rotational spectrum of S2 is undertaken, including relevant effects, such as non-equilibrium state superposition and the number density profile within the coma due to dynamics and chemistry, to investigate the importance of the above effects on the scale length and abundance of S2 in comets.Comment: 20 pages, 7 figure

    Radiation-induced malignancies following radiotherapy for breast cancer

    Get PDF
    With advances in diagnosis and treatment, breast cancer is becoming an increasingly survivable disease resulting in a large population of long-term survivors. Factors affecting the quality of life of such patients include the consequences of breast cancer treatment, which may have involved radiotherapy. In this study, we compare the incidence of second primary cancers in women who received breast radiotherapy with that in those who did not (non-radiotherapy). All women studied received surgery for their first breast cancer. Second cancers of the lung, colon, oesophagus and thyroid gland, malignant melanomas, myeloid leukaemias and second primary breast cancers were studied. Comparing radiotherapy and non-radiotherapy cohorts, elevated relative risks (RR) were observed for lung cancer at 10-14 years and 15 or more (15+) years after initial breast cancer diagnosis (RR 1.62, 95% confidence interval [CI] 1.05-2.54 and RR 1.49, 95% CI 1.05-2.14, respectively), and for myeloid leukaemia at 1-5 years (RR 2.99, 95% CI 1.13-9.33), for second breast cancer at 5-10 years (RR 1.34, 95% CI 1.10-1.63) and 15+ years (RR 1.26, 95% CI 1.00-1.59) and oesophageal cancer at 15+ years (RR 2.19, 95% CI 1.10-4.62)

    New Faculty on the Block: Issues of Stress and Support

    Get PDF
    The research reported investigated the experiences of new faculty in their first three years of employment in higher education administration programs. New faculty face stress relative to work-life integration, issues pertaining to gender or color, teaching responsibilities, and unclear expectations. The findings of this study highlight the role of graduate school socialization and identification as a chosen student targeting a faculty position as an influence on new faculty and their acclimation during their first years. Implications include the need for intentional mentoring, inclusive support for all students seeking faculty roles, and the need for specificity on the part of hiring committees and new departments regarding expectations. Key to new faculty success is obtaining a sense of work-life integration

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Offspring sex ratio and gonadal irradiation in the British Childhood Cancer Survivor Study

    Get PDF
    We investigated offspring sex ratio among 6232 offspring born to 3218 survivors of childhood cancer in relation to therapeutic irradiation, and pooled our data with those from two other large-scale studies giving a total of 9685 offspring. Exposure to high-dose gonadal irradiation was not associated with a significant alteration in offspring sex ratio compared to low doses (men: P=0.58, women: P=0.66). There was also no evidence that the ratio varied with time since cancer diagnosis when comparing survivors treated with radiotherapy vs those without (men: P=0.51; women: P=0.46). This, the largest study to date, finds no evidence that exposure to radiation affects the offspring sex ratio among survivors of childhood cancer

    Intrauterine environment, mammary gland mass and breast cancer risk

    Get PDF
    Two intimately linked hypotheses on breast cancer etiology are described. The main postulate of the first hypothesis is that higher levels of pregnancy estrogens and other hormones favor the generation of a higher number of susceptible stem cells with compromised genomic stability. The second hypothesis postulates that the mammary gland mass, as a correlate of the number of cells susceptible to transformation, is an important determinant of breast cancer risk. A simple integrated etiological model for breast cancer is presented and it is indicated that the model accommodates most epidemiological aspects of breast cancer occurrence and natural history
    corecore